Studi Keamanan Sistem Operasi Android: Analisis dan Pencegahan Malware Berbasis Mobile
Abstract
Full Text:
PDFReferences
Yang, S., Wang, Y., & Xu, H. (2022). An Android Malware Detection and Classification Approach Based on Contrastive Learning. Computers & Security, 123, Article 102915.
Liderman, E. (2023, October 17). Android Security Paper 2023. Google Blog. Diakses dari Google.
Molina-Coronado, B., Ruggia, A., Mori, U., Merlo, A., Mendiburu, A., & Miguel-Alonso, J. (2023). Light up that Droid! On the effectiveness of static analysis features against app obfuscation for Android malware detection. arXiv.
Pan, J., Cui, Z., Lin, G., Chen, X., & Zheng, L. (2023). A Review of Static Detection Methods for Android Malicious Application. Journal of Computer Research and Development, 60(8), 1875–1894. https://doi.org/10.7544/issn1000-1239.202220297
El Fiky, A. H., Elshenawy Elsefy, A., & Madkour, M. A. (2021, Mei). A Survey of Malware Detection Techniques for Android Devices. AL-AZHAR Engineering Fifteenth International Conference (Conference Paper).
Liu, Y., Tantithamthavorn, C., Li, L., & Liu, Y. (2021, Maret). Deep Learning for Android Malware Defenses: a Systematic Literature Review. arXiv.
Negi, C., Mishra, P., Chaudhary, P., & Vardhan, H. (2021). A Review and Case Study on Android Malware: Threat Model, Attacks, Techniques and Tools. Journal of Cyber Security and Mobility, 10(1), 231–260. https://doi.org/10.13052/jcsm2245-1439.1018
Shakya, S., & Dave, M. (2022). Analysis, Detection, and Classification of Android Malware using System Calls. arXiv. https://doi.org/10.48550/arXiv.2208.06130
Refbacks
- There are currently no refbacks.
_(1)3.png)
_(1)2.png)